INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE

B.MATH - Third Year, First Semester, 2006-07

Statistics - III, Semesteral Examination, December 6, 2006

- (8) 1. Consider the model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, ..., n, where ϵ_i are i.i.d. $N(0, \sigma^2)$. Find the joint probability distribution of $\frac{1}{n} \sum_{i=1}^{n} y_i$ and residual sum of squares.
- (12) 2. Let Y_1, \ldots, Y_n be independent random variables with unit variance, and let $X_1 = Y_1$, $X_i = Y_i Y_{i-1}$ for $1 < i \le n$.
- (a) Find the covariance matrix of $\mathbf{X} = (X_1, X_2, \dots, X_n)'$.
- (b) Find the partial correlations $\rho_{12.3}$ and $\rho_{12.34}$ (between components of **X**).
- (15) 4. The response time in milliseconds was determined for three different types of circuits that could be used in an automatic valve shutoff mechanism. The results were the following:

Circuit	Response time (ms)				
1	9	12	10	8	15
2	20	21	23	17	30
3	6	5	8	16	7

- (a) Describe the methodology for determining whether the response times for the different circuit types significantly differ. Numerical computations are not needed.
- (b) What is meant by a linear contrast in an experiment like this?
- (c) What is the relation between the ANOVA null hypothesis and the hypotheses to check various linear contrasts?
- (15) 5. Consider a completely randomized two-factor experiment.
- (a) What do main effects and interactions mean in this context? Relate them to the means of cells formed by the levels of the factors.
- (b) Describe how presence of these parameters can be checked.
- (c) Provide an expression for the proportion of variability in the response variable explained by the two-factor model.